
Michael Masenheimer- Vitis AI + ResNet-50 Workflow Notes

*Note that this work was done on a Windows 11, 64 bit x64 based system, so different machines may
demand different steps-I did my best to document the separation between windows and unix/linux steps.
If there is any confusion here, I recommend checking out the quick start guide here:
https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html

Remoting into the EEPP Arizona physics server for Vitis through the

terminal (I’m using a GitBash terminal on Windows 11)

1. Boot up Cisco Secure client, login with UA netID and activate UA SSL VPN

2. Initialize master server for exporting the vitis display to. (This allows you to set your gitbash
$DISPLAY variable to whatever the master server is, in my case it’s “Michaels-Laptop:0.0”),
check the system tray to see if it’s running–it should have 0 clients before remoting into the
eepp. On client startup for the xserver, do “Start no client”, and uncheck “native opengl” and
check “disable access control”, then click finish.

3. Once the VPN is instantiated, open a GitBash terminal and run export DISPLAY={NAME OF
X SERVER}, I recommend running an echo $DISPLAY and cross checking what the current
display is set to to the xserver name.

4. When you remote in, run ssh -Y {YOUR USERNSMAE}@eepp-t400.physics.arizona.edu and
enter the password, it’ll give you an auth warning, but that doesn’t apply to running vitis or
xclock (a display test). I recommend running xclock after this to see if the display is working. A
little clock should show up on the screen, and to get out of it, click the x in the top right. If the
clock isn’t showing up, try running echo $DISPLAY again to see if your display variable is set
correctly

5. Now we source vitis using source /tools/Xilinx/Vitis/2024.1/settings64.sh after that, simply run
vitis and it’ll initialize the Vitis IDE. I like to have a terminal open in vitis, so there should be a
button on the left-hand side to open one, and you can select the kind of terminal, (given you
have the correct software installed), but GitBash works great or the default macOS or linux
terminals are great too).

Compiling the RESNET_50 model through docker (I’m on windows,
so some extra steps are needed), estimated 12-14 GB of storage

needed

https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html

* I noticed that for this section, I couldn’t pull anything from the Vitis AI repository when I had the U of A
VPN on, so make sure to turn it off before continuing

1. FOR WINDOWS USERS ONLY– STEPS 1-3 We need to install the Windows Subsystem for
Linux (WSL) in order to evaluate Vitis AI. Open a powershell and run [Powershell] > wsl --install
-d Ubuntu-20.04

2. Depending on your system requirements, you might need to install a different distribution of
WSL, so see https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/system_requirements.html,
you can also see the distribution options by running [Powershell] > wsl --list --online

3. Now we start a distribution. I use [Powershell] > wsl -d Ubuntu-20.04 on my machine

4. Now It’s time to clone the VItis AI Repository (Approx. 250 MB). Once you have done this
step, you don’t need to do it again. If you’re on windows, open up WSL, and if on unix/linux run
[Host] $ git clone https://github.com/Xilinx/Vitis-AI Make sure you have Git installed on your
machine prior to this step. https://git-scm.com/downloads

5. Next, we must install docker desktop. I believe it is the same process if you’re on unix/linux-
based systems or WSL. I followed https://www.docker.com/get-started/ and used [Host] $ sudo
apt update && sudo apt install docker.io to install docker and then sudo usermod -aG docker
mmasenheimer to add myself (mmasenehimer) as a user to the docker group

6. Check to see if you can run a docker container by running [Host] $ docker run hello-world
This will automatically download a test image from docker and run it in a container, it should spit
out “hello world” if run correctly. You should have the latest version of docker installed but if
you’re unsure, run [Host] $ docker --version to see what current version you’re running

7. Pulling the vitis AI Docker. Now that we have docker set up and have cloned the Vitis
repository, we can download the container with pre-trained models. The actual download is
around 4-5 GB compressed and 8 GB after extraction. Run [Host] $ docker pull
xilinx/vitis-ai-pytorch-cpu:latest

8. After pulling the AI Docker, we need to install the Xilinx cross compiler so we can dock the
Resnet_50 model. If you’ve already installed the compiler, skip this step. This requires a lot
of disk space, I found to be around 5 GB. By default, the cross compiler will be installed in
~/petalinux_sdk_2023.1. Make sure whatever path you choose has read/write permissions, although
I just went with the default which does.
Run [Host] $ cd Vitis-AI/board_setup/vek280
Run [Host] $ sudo chmod u+r+x host_cross_compiler_setup.sh
Run [Host] $./host_cross_compiler_setup.sh
(This will take a while)

https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/system_requirements.html
https://git-scm.com/downloads
https://www.docker.com/get-started/

9. After the installation is complete, follow the prompts on the screen, and then run this
command: [Host] $ source ~/petalinux_sdk_2023.1/environment-setup-cortexa72-cortexa53-xilinx-linux

After step 9, we will start a docker container targeting resnet_50, I found that closing the terminal or
commanding “exit” stops the container completely and you have to go back and restart

10. Notice that the /workspace directory in Docker corresponds to your /Vitis-AI directory on the
host. Thus note that [Docker] /workspace/examples/vai_runtime/resnet50_pt = [Host]
Vitis-AI/examples/vaiexamples/vai_runtime/resnet50_pt. This is just a check for correct directory
installation. Run [Host] $ cd ../.. To backtrack directories. Now run [Host] $./docker_run.sh
xilinx/vitis-ai-pytorch-cpu:latest You should see something like the following image:

11. Now we need to activate the conda pytorch environment. There is a way to use TensorFlow
instead of Pytorch but for the sake of simplicity and remaining in the realm of defined
documentation through Xilinx, we’ll stick with torch. Run [Docker] $ conda activate
vitis-ai-pytorch

12. Cross-compiling the resnet_50 example in docker.
Run [Docker] $ cd examples/vai_runtime/resnet50_pt (Pointing the directory towards resnet)
Run [Docker] $ sudo chmod u+r+x build.sh (Changing file mode permissions)
Run [Docker] $ bash -x build.sh (Actually compiling the model, I found that the line in the quick
start guide for this has a Unicode en dash (U+2013) instead of a regular hyphen, causing a
directory error in bash. The command above corrected that). You should see something like the
image below

If the compilation process does not report an error and the executable file resnet50_pt is
generated, then the host environment is installed correctly. If an error is reported, double-check
that you executed the source ~/petalinux.... Command.

13. If you are going to run the model in vitis (next section), keep the terminal window open. The
model is now compiled under (vitis-ai-pytorch)
vitis-ai-user@Michaels-Laptop:/workspace/examples/vai_runtime/resnet50_pt$

Running AIE ML simulation on our compiled resnet_50 model
through Vitis (from the previous section)

1. Working on running tests on the compiled model this week (It is taking a while to figure

out). There are a few types of tests we could undergo.

● VART test (Validation with Vitis AI Runtime) which validates that the model runs
correctly, completely in the vitis ai docker. It runs inference on a set of images.
(Girrafe.jpg and sample.jpg). Shows FPS, accuracy and DPU usage. I’m still in
testing here, I don’t have concrete instructions yet.

● Quantization validation test (Will run in the future, I’m in the process of looking for
a good dataset of 100-1000 images to test). This tests the possibility of reducing
the precision of resnet weights and activation for faster inference and lower
memory usage. This test verifies that quantization hasn’t degraded the model’s
accuracy too much. In progress

● AI Engine Graph test Running custom signal processing using a dataflow model.
According to xilinx, this should be run before deploying the model to the VEK.
This test examines data flow between PLIOs and kernels, kernel execution, and
other graph behavior. Looking to test this week.

● Actual board deployment and execution I think this should be the final test for a
model, given the others validate the deployment, and behavior. Can’t do yet until
the board in configured correctly, which we can figure out how to do in
https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html under setting up the
target.

● Performance and Profiling test This test will display layer-level latency and
hardware utilization. Good to know when writing custom models as we can set
our own benchmarks. Can be done so by running:

[Host} $ cd /workspace/examples/vai_runtime/resnet50_pt/
[Host] $ env DPU_PROFILE=1 ./resnet50 ./resnet50.xmodel ./images

Note that this test can be done on the actual VEK board or in the docker
container

2. These tests can all be done on already compiled models, I haven’t gotten around to any
of them except for performance and profiling. Once I run the graph test in vitis, I’ll
document the process.

Pushing the compiled resnet50.xmodel and other important stuff
into a github for universal sourcing

I wanted to go through the xilinx ai repository and trim off any unnecessary files and unrelated
branches, so I ended up copying what I thought was important to a local file on my computer
from the docker and then pushing them onto my personal repository:
https://github.com/mmasenheimer/resnet50-model

1. I made a file serving as a medium between the docker container and my github, since
apparently you can’t push stuff straight from the container (I think?). While you’re in the
container, copy the file directory to your medium folder (I just threw it on my desktop) and
run [Host] $ mkdir -p /mnt/c/Users/mmase/Desktop/resnet50model My directory will be
different from yours, of course!

2. Next you’re going to want to get your docker container id, which is needed for copying
stuff inside the container to the folder. Do so by opening up a new WSL gitbash terminal
and type [Host] $ docker ps copy the id, and then run [Host] $ docker cp
dd835a07a693:/workspace/examples/vai_runtime/resnet50_pt/resnet50/resnet50.xmode
l /mnt/c/Users/mmase/Desktop/resnet50model/resnet50.xmodel where the items in pink
correspond to the container id and the path to that medium folder, respectively.

https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html
https://github.com/mmasenheimer/resnet50-model

3. I copied a few things into this folder, two test images, the actual compiled
resnet50.xmodel, a README from xilinx specifically about the VEK model, resnet50_pt
which is the runtime executable for the model, and finally a list of ImageNet class labels.
I then headed over to my gitHub and created a new repository, called resnet50-model,
then executed the following lines on a windows powershell terminal:

[ps] > cd /mnt/c/Users/mmase/Desktop/resnet50model
[ps] > git init
[ps] > git add <all of the file names separated by a space>
[ps] > git commit -m “some really cool awesome message about the commit to the repo”
[ps] > git push origin main

Now any machine can clone this repository (after I do some housekeeping), and have

the compiled model, the executable, and a few test images available without having to
download the entire 500 MB xilinx repo. This week I might try to get a few variable size models
in this github for further testing. https://github.com/mmasenheimer/resnet50-model

Michael Masenehimer FPGAs and ML inference with hls4ml
workflow notes

(Notes from Systems Group at ETH Zurich)

- The large collision frequency on the LHC produces 100TB of data per second,
“triggering” means filtering the data to reduce it to manageable levels

Why use FPGAs?

- Custom hardware acceleration, precisions and memory management (full control

over the hardware)

- Data-flow architecture with no scheduling or control overheads

- FPGAs enable space and time multiplexing; compared to GPUs which usually
only allow time multiplexing (Combining multiple signals into one signal)

- Each layer in the neural network gets a dedicated custom piece of hardware for
itself

- Data is streamed between layers enabling deeply pipelined designed designs

https://github.com/mmasenheimer/resnet50-model

FPGAs vs GPUs

- Layers are processed sequentially with some scheduling overhead (the kernel
gets access to the whole GPU by default)

- There is less support for custom precisions (single-bit operands aren’t very good)
and memory hierarchy and data movement

GPUs We use FPGAs when:

Much higher frequency compared to
FPGAs (8x-10x)

Extremely low latency requirements
(~100s of ns)

More memory and bandwidth Low power requirements and
constrained environments (like
satellites or robots)

Faster for highly parallel, floating-point
operations

In-network processing

 Custom precisions and highly irregular
operations such as embeddings

FPGA Architecture

- Logic cells (or look-up tables) perform arbitrary functions on small bit width inputs

- These can be used for boolean operations, arithmetic, small memories

- Flip-Flops (or registers) data in time with the clock pulse, so data can be stored

at every clock cycle and read at every clock cycle

- DSPs (Digital Signal Processors) are specialized units for multiplication and
arithmetic

- Faster and more efficient than using LUTs for these types of operations

- For neural networks, DSPs are often the most scarce resource

- BRAMs are small, fast memories which can access data in one clock cycle

- A “bigger” FPGA has nearly 40MB of BRAM, chained together as needed, which
is also suitable for larger models such as ResNet

- Recent accelerator cards also come equipped with off-chip HBM memory, up to

800 GBps

- In addition, there are specialised blocks for I/O, making FPGAs popular in larger
computer systems

- High speed transceivers with Tb/s total bandwidth

- Low power per Op (relative to CPU/GPU)

How FPGAs are Programmed

- Hardware description Languages (HDL): are programming languages which

describe electronic circuits

High level Synthesis:

-Compile from C/C++ to VHDL

-Pre-processor directives and constraints used to
optimize the design

-Drastic decrease in firmware development time

-We use AMD/Xilinx Vitis HLs

HLS examples

- Note the loop parallelised 4 times
in each clock cycle

- Total block execution: 6 / 4 = 4cc

- Reshapes the weight matrix according to a specific block factor

- Stores the resulting array in on-chip ROM

Enter hls4ml: an open-source framework for neural network

acceleration on FPGAs

- Front-end agnostics: Keras, PyTorch, or (Q)ONNX

- Back-end agnostic: vivado HLS, Vitis HLS, intel HLS, oneAPI, Catapult HLS, etc

- Many supported layers, Dense, Convolutional, Recurrent, Graph, etc

- High configurability: Tune precision, reuse factor, custom layers etc

Neural network inference

X_n = g_n (W_(n, n-1) x_(n-1) + b_n)

Logic cells or precomputed and stored in BRAMs

DSPs

Logic cells

-Balance between resources, does the model fit in
the latency requirements?

Efficient inference: parallelisation

- Trade-off between latency and FPGA resources determined by the parallelization
of the calculations in each layer

- Configure the “reuse factor” = number of times a multiplier is re-used to do a

computation

Efficient inference: quantisation

- Floating point operations are expensive

- On FPGAs, we can use fixed-point precision:
- Implemented using integer logic therefore very fast
- Acts like “limited-precision” floating-point, so need to ensure sufficient bits

Efficient inference:
quantisation-aware training

- Quantisation-aware training enables training models with very low precisions:

- Out-performs post-training quantisation significantly

- At a high level, it performs the forward pass with reduced precision and the

backward pass in floating point precision

- Possible to achieve very low precisions (for binary and ternary models)

Building a convolutional neural network in C++
workflow notes

Theory behind CNNs

- CNNs are designed to process data with grid-like topology (images in our case)

- CNNs do not treat inputs as flat vectors like fully connected networks, they use

the spatial structure of the data

- Designed to automatically and adaptively learn spacial hierarchies of feature
from input images

Training a CNN

- Forward pass- each layer applies its transformations -> activations -> pooling ->
flatten -> dense -> output

- Loss calculation- The predicted outputs are compared to the true labels using a

loss function (Research more on this later)

- Backpropagation- Gradients of the loss with respect to the weights are
computed with the chain rule, gradients flow backwards through the network,
adjusting filters and weights

Extra

- In early layers, filters learn edges, textures, and colors
- In deeper layers, they learn object parts, shapes, and entire objects
- CNNs compose features from low-level to high-level

CNN Architecture

Input
Layer

Convolutional
layer

Activation
Function

Pooling
layer (max
or Avg
pooling)

Repeat
Conv +
ReLu +
Pooling

Flatten
Layer

Fully
connected
layer (Dense
Layer)

Output layer

-Accepts
input
image:
e.g a
28x28
grayscale
image ->
28x28x1
tensor

-Applies a set
of learnable
filters
(kernels)

-Applies a
non-linear
function:
f(x) =
max(0, x)

-Reduces
the spacial
dimension
s

-Can
stack
multiple
conv
layers to
learn
more
abstract
patterns
(edges,
shapes,
objects)

-Converts
3D feature
maps into
a 1D
vector
before
feeding
directly
into fully
connected
layers

-Classic
neural
network layer
where every
input is
connected to
every output
node

-Turns final
layer outputs
into
probabilities

-For RGB:
32x32x3
(3
channels)

-Filters slide
across the
image and
computes dot
products

-Ensures
the
network
can
model
complex
functions

E.G., a
2x2 max
pooling
layer
picks the
max value
in each
2x2
window

 -Used for final
classification

Output:
vector of size
#classes

 -Each filter
generates a
feature map,
output is
filters x new
height x new
width

 -Helps
with
translation
invariance
and
reduces
computatio
n

 E.G. a
128-unit
dense layer
followed by
10-unit output
layer for digit
classification

Additional items this week:

- Pushed a non-compiled resnet 18 model into the resnet 50 repository for testing (uses
torch)

- Began to create my first network in C++, using eigen library for linear algebra

CNN and FFNN Testing in Vitis workflow notes

Generating a public key for the U of Arizona physics server (to clone
my personal github repo)

I tried to clone the github repository with my xfile model on it for testing on the remote
server, but github.com refused the connection for security. Prior to this, the server had
never authenticated successfully to GitHub over SSH, so I generated a public and
private key to be able to connect to the repo (push, pull code). The key fingerprint is:

SHA256:lBteV3vc/4ywAUCs9F01X8YjA6iXZ17GiSEbwHi0/Ho mmasenheimer21@gmail.com

The randomart image looks something like this…
(https://github.com/mmasenheimer/resnet50-model was cloned onto the server)

| +=++.o|
| .ooo* ..+ B+|
| ..==.B.= = *|
| .+oB.* = ..|
| S.+ = .|
| . . + o.|
| . E . . o|
| . |
| |
+----[SHA256]-----+

The next step was to get the xilinx common image file (downloaded from amd site here)
onto the physics server in order to run a QEMU-simulated Linux environment. I used an

http://github.com
mailto:mmasenheimer21@gmail.com
https://github.com/mmasenheimer/resnet50-model
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-platforms/2024-1.html

scp command to transfer the file, and set up a connection between my computer and
the server via the ip address, then transferred the file (about 1.2 gb). Tried breaking up
the file into 100mb bits but lost connection each time. Tried resync but I need sudo
commands on the server. Tried google drive/dropbox but it only downloaded the HTML,
not the actual xilinx file.

AIE-ML Performance Analysis

I found an article off the AMD technical information portal about how to conduct
performance analysis through vitis, targeting the VEK 280 board.

https://docs.amd.com/r/2024.1-English/Vitis-Tutorials-AI-Engine-Development/AIE-ML-P

erformance-Analysis

Once I can get the common image installed on the server, run:

/**Common Images
Dir**/xilinx-versal-common-v2024.1/environment-setup-cortexa72-cortexa53-xilinx-linux

which will set up the sdktargetsysroot and cxx variables. If we cannot source into the
script, run:

/**Common Images Dir**/xilinx-versal-common-v2024.1/sdk.sh.

Now we set environment variables:

Set up your ROOTFS and IMAGE to point to the rootfs.ext4 and Image files located in
the /**Common Images Dir**/xilinx-versal-common-v2024.1 directory.

Set up PLATFORM_REPO_PATHS environment variable to:

$XILINX_VITIS/base_platforms.

Types of simulations

https://docs.amd.com/r/2024.1-English/Vitis-Tutorials-AI-Engine-Development/AIE-ML-Performance-Analysis
https://docs.amd.com/r/2024.1-English/Vitis-Tutorials-AI-Engine-Development/AIE-ML-Performance-Analysis
http://sdk.sh

Tool Description Used for .xmodel

x86simulator Simulation for AI engine
graphs only

No

v++ -t sw_emu Software emulation of
custom kernels in PL

No

V++ -t hw_emu Full system hardware
emulation (AI engine + pl +
ps)

Not really practical for
.xmodel

vitis_analyzer Timeline + profiling tool
after emulation or real
hardware

No

Vitis AI Runtime (VART) High level simulation of
.xmodel on x86 CPU

Yes

Michael Masenheimer- Testing Resnet architecture + My own
model

My model uses EfficientNet B0 CNN architecture

Resnet 50

(Vitis AI analyzer stats)

Thread          Event             Start (ms)     End (ms)

host:pre_proc    preprocess frame             0.0         5.0

host:DPU_enqueue    enqueue model to DPU             5.0         5.1

device:DPU0    DPU inference (layers)             5.1        13.0

host:pre_proc    prepare next frame             6.0        11.0

device:DPU0    DPU inference (next frame)             13.0       21.5

Metric Value Notes / Source

Inference Time ~3 milliseconds per
image

Need to do more tests to narrow the inference
times down + test different resnet models

Throughput ~357 images/sec Could differ on the Engine

Memory Usage ~98-100 MB Model size + activations

Number of
Parameters

~25.6 million Standard ResNet-50 architecture

EfficientNet B0
(Vitis AI analyzer stats)

DPU Layer-wise Profiling

Layer Name Kernel Type Exec Time (ms) Thread Usage (%)

conv2d_0 CONV 1.2 75

batch_norm_0 BATCHNORM 0.3 20

mbconv_3 DEPTHWISE 3.4 90

fc_1 FC 0.8 60

Total Exec Time: 7.7 ms

DPU Utilization: 85%

Inference Time: 1.02 milliseconds per image

Throughput: 978 inferences per second

https://aihub.qualcomm.com/models/efficientnet_b0?utm_source=chatgpt.com
https://aihub.qualcomm.com/models/efficientnet_b0?utm_source=chatgpt.com

Memory Usage: 27MB

Number of Parameters: 5.27 million.

This is a header (2 ##)

This is a subheader (3 ###)

And another! (4 ####)
Test

Week of 7/14

- Rough draft of a FFNN in c++

https://github.com/mmasenheimer/neural-networks-for-LHC under “FFNN”

https://aihub.qualcomm.com/models/efficientnet_b0?utm_source=chatgpt.com
https://github.com/mmasenheimer/neural-networks-for-LHC

	This is a header (2 ##)
	This is a subheader (3 ###)
	And another! (4 ####)

