
Michael Masenheimer- Vitis AI + ResNet-50 Workflow Notes 
 
*Note that this work was done on a Windows 11, 64 bit x64 based system, so different machines may 
demand different steps-I did my best to document the separation between windows and unix/linux steps. 
If there is any confusion here, I recommend checking out the quick start guide here: 
https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html 

 
Remoting into the EEPP Arizona physics server for Vitis through the 

terminal (I’m using a GitBash terminal on Windows 11) 
 

1.  Boot up Cisco Secure client, login with UA netID and activate UA SSL VPN 
 
2. Initialize master server for exporting the vitis display to. (This allows you to set your gitbash 
$DISPLAY variable to whatever the master server is, in my case it’s “Michaels-Laptop:0.0”), 
check the system tray to see if it’s running–it should have 0 clients before remoting into the 
eepp. On client startup for the xserver, do “Start no client”, and uncheck “native opengl” and 
check “disable access control”, then click finish. 
 
3. Once the VPN is instantiated, open a GitBash terminal and run export DISPLAY={NAME OF 
X SERVER}, I recommend running an echo $DISPLAY and cross checking what the current 
display is set to to the xserver name. 
 
4. When you remote in, run ssh -Y {YOUR USERNSMAE}@eepp-t400.physics.arizona.edu and 
enter the password, it’ll give you an auth warning, but that doesn’t apply to running vitis or 
xclock (a display test). I recommend running xclock after this to see if the display is working. A 
little clock should show up on the screen, and to get out of it, click the x in the top right. If the 
clock isn’t showing up, try running echo $DISPLAY again to see if your display variable is set 
correctly 
 
5. Now we source vitis using source /tools/Xilinx/Vitis/2024.1/settings64.sh after that, simply run 
vitis and it’ll initialize the Vitis IDE. I like to have a terminal open in vitis, so there should be a 
button on the left-hand side to open one, and you can select the kind of terminal, (given you 
have the correct software installed), but GitBash works great or the default macOS or linux 
terminals are great too). 
 
 

Compiling the RESNET_50 model through docker (I’m on windows, 
so some extra steps are needed), estimated 12-14 GB of storage 

needed 
 

https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html


* I noticed that for this section, I couldn’t pull anything from the Vitis AI repository when I had the U of A 
VPN on, so make sure to turn it off before continuing 

 
1.  FOR WINDOWS USERS ONLY– STEPS 1-3  We need to install the Windows Subsystem for 
Linux (WSL) in order to evaluate Vitis AI. Open a powershell and run [Powershell] > wsl --install 
-d Ubuntu-20.04 
 
2. Depending on your system requirements, you might need to install a different distribution of 
WSL, so see https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/system_requirements.html, 
you can also see the distribution options by running  [Powershell] > wsl --list --online  
 
3. Now we start a distribution. I use [Powershell] > wsl -d Ubuntu-20.04 on my machine 
 
4. Now It’s time to clone the VItis AI Repository (Approx. 250 MB). Once you have done this 
step, you don’t need to do it again. If you’re on windows, open up WSL, and if on unix/linux run 
[Host] $ git clone https://github.com/Xilinx/Vitis-AI Make sure you have Git installed on your 
machine prior to this step. https://git-scm.com/downloads 
 
5. Next, we must install docker desktop. I believe it is the same process if you’re on unix/linux- 
based systems or WSL. I followed https://www.docker.com/get-started/ and used [Host] $ sudo 
apt update && sudo apt install docker.io to install docker and then sudo usermod -aG docker 
mmasenheimer to add myself (mmasenehimer) as a user to the docker group 
 
6. Check to see if you can run a docker container by running [Host] $ docker run hello-world 
This will automatically download a test image from docker and run it in a container, it should spit 
out “hello world” if run correctly. You should have the latest version of docker installed but if 
you’re unsure, run [Host] $ docker --version to see what current version you’re running 
 
7. Pulling the vitis AI Docker. Now that we have docker set up and have cloned the Vitis 
repository, we can download the container with pre-trained models. The actual download is 
around 4-5 GB compressed and 8 GB after extraction. Run [Host] $ docker pull 
xilinx/vitis-ai-pytorch-cpu:latest 
 
8. After pulling the AI Docker, we need to install the Xilinx cross compiler so we can dock the 
Resnet_50 model. If you’ve already installed the compiler, skip this step. This requires a lot 
of disk space, I found to be around 5 GB. By default, the cross compiler will be installed in 
~/petalinux_sdk_2023.1. Make sure whatever path you choose has read/write permissions, although 
I just went with the default which does. 
Run [Host] $ cd Vitis-AI/board_setup/vek280 
Run [Host] $ sudo chmod u+r+x host_cross_compiler_setup.sh 
Run [Host] $ ./host_cross_compiler_setup.sh 
(This will take a while) 
 

https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/system_requirements.html
https://git-scm.com/downloads
https://www.docker.com/get-started/


9. After the installation is complete, follow the prompts on the screen, and then run this 
command:  [Host] $ source ~/petalinux_sdk_2023.1/environment-setup-cortexa72-cortexa53-xilinx-linux 
 
After step 9, we will start a docker container targeting resnet_50, I found that closing the terminal or 
commanding “exit” stops the container completely and you have to go back and restart 
 
10. Notice that the /workspace directory in Docker corresponds to your /Vitis-AI directory on the 
host. Thus note that [Docker] /workspace/examples/vai_runtime/resnet50_pt = [Host] 
Vitis-AI/examples/vaiexamples/vai_runtime/resnet50_pt. This is just a check for correct directory 
installation. Run [Host]   $ cd ../.. To backtrack directories. Now run [Host]   $ ./docker_run.sh 
xilinx/vitis-ai-pytorch-cpu:latest You should see something like the following image: 
 

 
 
11. Now we need to activate the conda pytorch environment. There is a way to use TensorFlow 
instead of Pytorch but for the sake of simplicity and remaining in the realm of defined 
documentation through Xilinx, we’ll stick with torch. Run [Docker] $ conda activate 
vitis-ai-pytorch 
 
12. Cross-compiling the resnet_50 example in docker.  
Run [Docker] $ cd examples/vai_runtime/resnet50_pt (Pointing the directory towards resnet) 
Run [Docker] $ sudo chmod u+r+x build.sh  (Changing file mode permissions) 
Run [Docker] $ bash -x build.sh (Actually compiling the model, I found that the line in the quick 
start guide for this has a Unicode en dash (U+2013) instead of a regular hyphen, causing a 
directory error in bash. The command above corrected that). You should see something like the 
image below 



 

 
 
If the compilation process does not report an error and the executable file resnet50_pt is 
generated, then the host environment is installed correctly. If an error is reported, double-check 
that you executed the source ~/petalinux.... Command. 
 
13. If you are going to run the model in vitis (next section), keep the terminal window open. The 
model is now compiled under (vitis-ai-pytorch) 
vitis-ai-user@Michaels-Laptop:/workspace/examples/vai_runtime/resnet50_pt$  
 
 

Running AIE ML simulation on our compiled resnet_50 model 
through Vitis (from the previous section) 

 
1. Working on running tests on the compiled model this week (It is taking a while to figure 

out). There are a few types of tests we could undergo. 
 

● VART test (Validation with Vitis AI Runtime) which validates that the model runs 
correctly, completely in the vitis ai docker. It runs inference on a set of images. 
(Girrafe.jpg and sample.jpg). Shows FPS, accuracy and DPU usage. I’m still in 
testing here, I don’t have concrete instructions yet. 
 

● Quantization validation test (Will run in the future, I’m in the process of looking for 
a good dataset of 100-1000 images to test). This tests the possibility of reducing 
the precision of resnet weights and  activation for faster inference and lower 
memory usage. This test verifies that quantization hasn’t degraded the model’s 
accuracy too much. In progress 
 

● AI Engine Graph test Running custom signal processing using a dataflow model. 
According to xilinx, this should be run before deploying the model to the VEK. 
This test examines data flow between PLIOs and kernels, kernel execution, and 
other graph behavior. Looking to test this week. 



● Actual board deployment and execution I think this should be the final test for a 
model, given the others validate the deployment, and behavior. Can’t do yet until 
the board in configured correctly, which we can figure out how to do in 
https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html under setting up the 
target. 
 

● Performance and Profiling test This test will display layer-level latency and 
hardware utilization. Good to know when writing custom models as we can set 
our own benchmarks. Can be done so by running: 
 
[Host} $ cd /workspace/examples/vai_runtime/resnet50_pt/ 
[Host] $ env DPU_PROFILE=1 ./resnet50 ./resnet50.xmodel ./images 
 
Note that this test can be done on the actual VEK board or in the docker 
container 
 

2. These tests can all be done on already compiled models, I haven’t gotten around to any 
of them except for performance and profiling. Once I run the graph test in vitis, I’ll 
document the process. 

 
 

Pushing the compiled resnet50.xmodel and other important stuff 
into a github for universal sourcing 

 
I wanted to go through the xilinx ai repository and trim off any unnecessary files and unrelated 
branches, so I ended up copying what I thought was important to a local file on my computer 
from the docker and then pushing them onto my personal repository: 
https://github.com/mmasenheimer/resnet50-model 
 

1. I made a file serving as a medium between the docker container and my github, since 
apparently you can’t push stuff straight from the container (I think?). While you’re in the 
container, copy the file directory to your medium folder (I just threw it on my desktop) and 
run [Host] $ mkdir -p /mnt/c/Users/mmase/Desktop/resnet50model My directory will be 
different from yours, of course! 
 

2. Next you’re going to want to get your docker container id, which is needed for copying 
stuff inside the container to the folder. Do so by opening up a new WSL gitbash terminal 
and type [Host] $ docker ps copy the id, and then run [Host] $ docker cp 
dd835a07a693:/workspace/examples/vai_runtime/resnet50_pt/resnet50/resnet50.xmode
l /mnt/c/Users/mmase/Desktop/resnet50model/resnet50.xmodel where the items in pink 
correspond to the container id and the path to that medium folder, respectively. 
 

https://xilinx.github.io/Vitis-AI/3.5/html/docs/quickstart/vek280.html
https://github.com/mmasenheimer/resnet50-model


3. I copied a few things into this folder, two test images, the actual compiled 
resnet50.xmodel, a README from xilinx specifically about the VEK model, resnet50_pt 
which is the runtime executable for the model, and finally a list of ImageNet class labels. 
I then headed over to my gitHub and created a new repository, called resnet50-model, 
then executed the following lines on a windows powershell terminal:  

 
[ps] > cd /mnt/c/Users/mmase/Desktop/resnet50model 
[ps] > git init 
[ps] > git add <all of the file names separated by a space> 
[ps] > git commit -m “some really cool awesome message about the commit to the repo” 
[ps] > git push origin main 
 
Now any machine can clone this repository (after I do some housekeeping), and have 

the compiled model, the executable, and a few test images available without having to 
download the entire 500 MB xilinx repo. This week  I might try to get a few variable size models 
in this github for further testing. https://github.com/mmasenheimer/resnet50-model 

 
 

Michael Masenehimer FPGAs and ML inference with hls4ml 
workflow notes 

(Notes from Systems Group at ETH Zurich) 

 
 

- The large collision frequency on the LHC produces 100TB of data per second, 
“triggering” means filtering the data to reduce it to manageable levels 

 
Why use FPGAs? 

 
- Custom hardware acceleration, precisions and memory management (full control 

over the hardware) 
 

- Data-flow architecture with no scheduling or control overheads 
 

- FPGAs enable space and time multiplexing; compared to GPUs which usually 
only allow time multiplexing (Combining multiple signals into one signal) 
 

- Each layer in the neural network gets a dedicated custom piece of hardware for 
itself 

 
- Data is streamed between layers enabling deeply pipelined designed designs 

 
 

https://github.com/mmasenheimer/resnet50-model


 
 

FPGAs vs GPUs 
 

- Layers are processed sequentially with some scheduling overhead (the kernel 
gets access to the whole GPU by default) 
 

- There is less support for custom precisions (single-bit operands aren’t very good) 
and memory hierarchy and data movement 
 
 

GPUs We use FPGAs when: 

Much higher frequency compared to 
FPGAs (8x-10x) 

Extremely low latency requirements 
(~100s of ns) 

More memory and bandwidth Low power requirements and 
constrained environments (like 
satellites or robots) 

Faster for highly parallel, floating-point 
operations 

In-network processing 

 Custom precisions and highly irregular 
operations such as embeddings 

 
 

FPGA Architecture 



 
- Logic cells (or look-up tables) perform arbitrary functions on small bit width inputs 

 
- These can be used for boolean operations, arithmetic, small memories 

 
- Flip-Flops (or registers) data in time with the clock pulse, so data can be stored 

at every clock cycle and read at every clock cycle 
 

 
 

- DSPs (Digital Signal Processors) are specialized units for multiplication and 
arithmetic 
 

- Faster and more efficient than using LUTs for these types of operations 
 

- For neural networks, DSPs are often the most scarce resource 
 

 
 

- BRAMs are small, fast memories which can access data in one clock cycle 
 

- A “bigger” FPGA has nearly 40MB of BRAM, chained together as needed, which 
is also suitable for larger models such as ResNet 

 
- Recent accelerator cards also come equipped with off-chip HBM memory, up to 

800 GBps 
 



 
 

- In addition, there are specialised blocks for I/O, making FPGAs popular in larger 
computer systems 

 
- High speed transceivers with Tb/s total bandwidth 

 
- Low power per Op (relative to CPU/GPU) 

 
How FPGAs are Programmed 

 
- Hardware description Languages (HDL): are programming languages which 

describe electronic circuits 
 

 
High level Synthesis: 
 
-Compile from C/C++ to VHDL 
 
-Pre-processor directives and constraints used to 
optimize the design 
 
-Drastic decrease in firmware development time 
 
-We use AMD/Xilinx Vitis HLs 
 
 
 
 
 
 
 
 
 

HLS examples 
 

- Note the loop parallelised 4 times 
in each clock cycle  
 

- Total block execution: 6 / 4 = 4cc 



 
 

 

 
 

- Reshapes the weight matrix according to a specific block factor 
 

- Stores the resulting array in on-chip ROM 
 
 
 
Enter hls4ml: an open-source framework for neural network 

acceleration on FPGAs 
 

- Front-end agnostics: Keras, PyTorch, or (Q)ONNX 
 

- Back-end agnostic: vivado HLS, Vitis HLS, intel HLS, oneAPI, Catapult HLS, etc 
 

- Many supported layers, Dense, Convolutional, Recurrent, Graph, etc 
 

- High configurability: Tune precision, reuse factor, custom layers etc 
 
 

 



 
Neural network inference 

 
X_n = g_n (W_(n, n-1) x_(n-1) + b_n) 
 
Logic cells or precomputed and stored in BRAMs 
 
DSPs 
 
Logic cells 
 
-Balance between resources, does the model fit in 
the latency requirements? 

Efficient inference: parallelisation 
 

- Trade-off between latency and FPGA resources determined by the parallelization 
of the calculations in each layer 

 
- Configure the “reuse factor” = number of times a multiplier is re-used to do a 

computation 
 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
 

Efficient inference: quantisation 
 



- Floating point operations are expensive 
 

- On FPGAs, we can use fixed-point precision: 
- Implemented using integer logic therefore very fast 
- Acts like “limited-precision” floating-point, so need to ensure sufficient bits 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Efficient inference: 
quantisation-aware training 

 
- Quantisation-aware training enables training models with very low precisions: 

 
- Out-performs post-training quantisation significantly 

 
- At a high level, it performs the forward pass with reduced precision and the 

backward pass in floating point precision 
 

- Possible to achieve very low precisions (for binary and ternary models) 
 

Building a convolutional neural network in C++ 
workflow notes 

 
Theory behind CNNs 

 
- CNNs are designed to process data with grid-like topology (images in our case) 

 
- CNNs do not treat inputs as flat vectors like fully connected networks, they use 

the spatial structure of the data 
 

- Designed to automatically and adaptively learn spacial hierarchies of feature 
from input images 

 
Training a CNN 

- Forward pass- each layer applies its transformations -> activations -> pooling -> 
flatten -> dense -> output 



 
- Loss calculation- The predicted outputs are compared to the true labels using a 

loss function (Research more on this later) 
 

- Backpropagation- Gradients of the loss with respect to the weights are 
computed with the chain rule, gradients flow backwards through the network, 
adjusting filters and weights 

 
Extra 

 
- In early layers, filters learn edges, textures, and colors 
- In deeper layers, they learn object parts, shapes, and entire objects 
- CNNs compose features from low-level to high-level 

 
 

CNN Architecture 
 

 

Input 
Layer 

Convolutional 
layer 

Activation 
Function 

Pooling 
layer (max 
or Avg 
pooling) 

Repeat 
Conv + 
ReLu + 
Pooling 

Flatten 
Layer 

Fully 
connected 
layer (Dense 
Layer) 

Output layer 

-Accepts 
input 
image: 
e.g a 
28x28 
grayscale 
image -> 
28x28x1 
tensor 

-Applies a set 
of learnable 
filters 
(kernels) 

-Applies a 
non-linear 
function: 
f(x) = 
max(0, x) 

-Reduces 
the spacial 
dimension
s 

-Can 
stack 
multiple 
conv 
layers to 
learn 
more 
abstract 
patterns 
(edges, 
shapes, 
objects) 

-Converts 
3D feature 
maps into 
a 1D 
vector 
before 
feeding 
directly 
into fully 
connected 
layers 

-Classic 
neural 
network layer 
where every 
input is 
connected to 
every output 
node 

-Turns final 
layer outputs 
into 
probabilities 

-For RGB: 
32x32x3 
(3 
channels) 

-Filters slide 
across the 
image and 
computes dot 
products 

-Ensures 
the 
network 
can 
model 
complex 
functions 

E.G., a 
2x2 max 
pooling 
layer  
picks the 
max value 
in each 
2x2 
window 

  -Used for final 
classification 

Output: 
vector of size 
#classes 



 -Each filter 
generates a 
feature map, 
output is 
filters x new 
height x new 
width 

 -Helps 
with 
translation 
invariance 
and 
reduces 
computatio
n 

  E.G. a 
128-unit 
dense layer 
followed by 
10-unit output 
layer for digit 
classification 

 

 
 

Additional items this week: 
 

- Pushed a non-compiled resnet 18 model into the resnet 50 repository for testing (uses 
torch) 

- Began to create my first network in C++, using eigen library for linear algebra 
 

CNN and FFNN Testing in Vitis workflow notes 
 

Generating a public key for the U of Arizona physics server (to clone 
my personal github repo) 

 
I tried to clone the github repository with my xfile model on it for testing on the remote 
server, but github.com refused the connection for security. Prior to this, the server had 
never authenticated successfully to GitHub over SSH, so I generated a public and 
private key to be able to connect to the repo (push, pull code). The key fingerprint is: 

 
SHA256:lBteV3vc/4ywAUCs9F01X8YjA6iXZ17GiSEbwHi0/Ho mmasenheimer21@gmail.com 
 

The randomart image looks something like this… 
(https://github.com/mmasenheimer/resnet50-model was cloned onto the server) 

 
|      +=+ ....+.o| 
|     .ooo* ..+ B+| 
|     ..==.B.= = *| 
|      .+oB.* = ..| 
|        S.+ =   .| 
|        .  . + o.| 
|       . E  . . o| 
|        .        | 
|                 | 
+----[SHA256]-----+ 
 

The next step was to get the xilinx common image file (downloaded from amd site here) 
onto the physics server in order to run a QEMU-simulated Linux environment. I used an 

http://github.com
mailto:mmasenheimer21@gmail.com
https://github.com/mmasenheimer/resnet50-model
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-platforms/2024-1.html


scp command to transfer the file, and set up a connection between my computer and 
the server via the ip address, then transferred the file (about 1.2 gb). Tried breaking up 
the file into 100mb bits but lost connection each time. Tried resync but I need sudo 
commands on the server. Tried google drive/dropbox but it only downloaded the HTML, 
not the actual xilinx file. 
 
 

AIE-ML Performance Analysis 
 

I found an article off the AMD technical information portal about how to conduct 
performance analysis through vitis, targeting the VEK 280 board.  
 
https://docs.amd.com/r/2024.1-English/Vitis-Tutorials-AI-Engine-Development/AIE-ML-P

erformance-Analysis 
 

Once I can get the common image installed on the server, run: 
 
/**Common Images 
Dir**/xilinx-versal-common-v2024.1/environment-setup-cortexa72-cortexa53-xilinx-linux 
 
which  will set up the sdktargetsysroot and cxx variables. If we cannot source into the 
script, run: 
 
/**Common Images Dir**/xilinx-versal-common-v2024.1/sdk.sh. 
 
Now we set environment variables: 
 

Set up your ROOTFS and IMAGE to point to the rootfs.ext4 and Image files located in 
the /**Common Images Dir**/xilinx-versal-common-v2024.1 directory. 

 
Set up PLATFORM_REPO_PATHS environment variable to: 
 
$XILINX_VITIS/base_platforms. 
 
 
 

Types of simulations 
 

https://docs.amd.com/r/2024.1-English/Vitis-Tutorials-AI-Engine-Development/AIE-ML-Performance-Analysis
https://docs.amd.com/r/2024.1-English/Vitis-Tutorials-AI-Engine-Development/AIE-ML-Performance-Analysis
http://sdk.sh


Tool Description Used for .xmodel 

x86simulator Simulation for AI engine 
graphs only 

No 

v++ -t sw_emu Software emulation of 
custom kernels in PL 

No 

V++ -t hw_emu Full system hardware 
emulation (AI engine + pl + 
ps) 

Not really practical for 
.xmodel 

vitis_analyzer Timeline + profiling tool 
after emulation or real 
hardware 

No 

Vitis AI Runtime (VART) High level simulation of 
.xmodel on x86 CPU 

Yes 

 
 

Michael Masenheimer- Testing Resnet architecture + My own 
model 

 
My model uses EfficientNet B0 CNN architecture 
 
 

Resnet 50 
 

(Vitis AI analyzer stats) 
 
Thread                   Event                                 Start (ms)     End (ms) 
 
host:pre_proc         preprocess frame                         0.0         5.0 
 
host:DPU_enqueue      enqueue model to DPU                    5.0         5.1 
 
device:DPU0          DPU inference (layers)                   5.1        13.0 
 
host:pre_proc         prepare next frame                       6.0        11.0 
 
device:DPU0          DPU inference (next frame)               13.0       21.5 
 
 
 



 

Metric Value Notes / Source 

Inference Time ~3 milliseconds per 
image 

Need to do more tests to narrow the inference 
times down + test different resnet models 

Throughput ~357  images/sec Could differ on the Engine 

Memory Usage ~98-100 MB Model size + activations 

Number of 
Parameters 

~25.6 million Standard ResNet-50 architecture 

 
 
 
 
 
 

 
 
 
 

EfficientNet B0 
(Vitis AI analyzer stats) 

 
DPU Layer-wise Profiling 
------------------------ 
Layer Name       Kernel Type     Exec Time (ms)    Thread Usage (%) 
--------------------------------------------------------------- 
conv2d_0         CONV            1.2               75 
 
batch_norm_0     BATCHNORM       0.3               20 
 
mbconv_3         DEPTHWISE       3.4               90 
 
fc_1             FC              0.8               60 
 
Total Exec Time:                     7.7 ms 
 
DPU Utilization:                    85% 
 
Inference Time: 1.02 milliseconds per image 
 
Throughput: 978 inferences per second 
 

https://aihub.qualcomm.com/models/efficientnet_b0?utm_source=chatgpt.com
https://aihub.qualcomm.com/models/efficientnet_b0?utm_source=chatgpt.com


Memory Usage: 27MB 
 
Number of Parameters: 5.27 million. 
 

 
 
 
 

This is a header ( 2 ##)  

This is a subheader ( 3 ###)  
 

And another! (4 #### ) 
Test  
 
 

Week of 7/14 
 

- Rough draft of a FFNN in c++ 
 
https://github.com/mmasenheimer/neural-networks-for-LHC under “FFNN” 

https://aihub.qualcomm.com/models/efficientnet_b0?utm_source=chatgpt.com
https://github.com/mmasenheimer/neural-networks-for-LHC
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